Dietary Restriction and 2-Deoxyglucose Administration Improve Behavioral Outcome and Reduce Degeneration of Dopaminergic Neurons in Models of Parkinson’s Disease
Duan, W., and M. P. Mattson.
Jul 15, 1999
Journal of Neuroscience Research. 1999 Jul 15;57(2):195-206. PubMed, https://doi.org/10.1002/(SICI)1097-4547(19990715)57:2<195::AID-JNR5>3.0.CO;2-P.
Abstract
Parkinson's disease (PD) is an age-related disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and corresponding motor deficits. Oxidative stress and mitochondrial dysfunction are implicated in the neurodegenerative process in PD. Although dietary restriction (DR) extends lifespan and reduces levels of cellular oxidative stress in several different organ systems, the impact of DR on age-related neurodegenerative disorders is unknown. We report that DR in adult mice results in resistance of dopaminergic neurons in the SN to the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-induced loss of dopaminergic neurons and deficits in motor function were ameliorated in DR rats. To mimic the beneficial effect of DR on dopaminergic neurons, we administered 2-deoxy-D-glucose (2-DG; a nonmetabolizable analogue of glucose) to mice fed ad libitum. Mice receiving 2-DG exhibited reduced damage to dopaminergic neurons in the SN and improved behavioral outcome following MPTP treatment. The 2-DG treatment suppressed oxidative stress, preserved mitochondrial function, and attenuated cell death in cultured dopaminergic cells exposed to the complex I inhibitor rotenone or Fe2+. 2-DG and DR induced expression of the stress proteins heat-shock protein 70 and glucose-regulated protein 78 in dopaminergic cells, suggesting involvement of these cytoprotective proteins in the neuroprotective actions of 2-DG and DR. The striking beneficial effects of DR and 2-DG in models of PD, when considered in light of recent epidemiological data, suggest that DR may prove beneficial in reducing the incidence of PD in humans.
Brain, Parkinson's Disease
The information on this website has not been evaluated by the Food & Drug Administration or any other medical body. We do not aim to diagnose, treat, cure or prevent any illness or disease. Information is shared for educational purposes only. The content of this blog is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Users should not disregard, or delay in obtaining, medical advice for any medical condition they may have, and should seek the assistance of their health care professionals for any such conditions. You must consult your doctor before acting on any content on this website, especially if you are pregnant, nursing, taking medication, or have a medical condition.
© 2021 by Flexible Fasting • All rights reserved • Created + Maintained by EmDesign
Privacy Policy • Legal Disclaimer • Terms of Use • HSA/FSA Information